
JDOM and XML Parsing, Part 1
JDOM makes XML manipulation in Java easier than ever.

hances are, you’ve probably used one of a
number of Java libraries to manipulate
XML data structures in the past. So what’s
the point of JDOM (Java Document Object
Model), and why do developers need it?

JDOM is an open source library for
Java-optimized XML data manipulations. Although it’s
similar to the World Wide Web Consortium’s (W3C)
DOM, it’s an alternative document object model that
was not built on DOM or modeled after DOM. The
main difference is that while DOM was created to be
language-neutral and initially used for JavaScript
manipulation of HTML pages, JDOM was created to be
Java-specific and thereby take advantage of Java’s
features, including method overloading, collections,
reflection, and familiar programming idioms. For Java
programmers, JDOM tends to feel more natural and
“right.” It’s similar to how the Java-optimized remote
method invocation library feels more natural than the
language-neutral Common Object Request Broker
Architecture.

You can find JDOM at www.jdom.org under an open
source Apache-style (commercial-friendly) license. It’s
collaboratively designed and developed and has mailing
lists with more than 3,000 subscribers. The library has
also been accepted by Sun’s Java Community Process
(JCP) as a Java Specification Request (JSR-102) and is
on track to become a formal Java specification.

The articles in this series will provide a technical
introduction to JDOM. This article provides information
about important classes. The next article will give you a
feel for how to use JDOM inside your own Java programs.

THE JDOM PACKAGE STRUCTURE
The JDOM library consists of six packages. First, the
org.jdom package holds the classes representing an
XML document and its components: Attribute,
CDATA, Comment, DocType, Document, Element, EntityRef,
Namespace, ProcessingInstruction, and Text. If you’re
familiar with XML, the class names should be self-
explanatory.

Next is the org.jdom.input package. which holds
classes that build XML documents. The main and most
important class is SAXBuilder. SAXBuilder builds a
document by listening to incoming SAX events and
constructing a corresponding document. When you want
to build from a file or other stream, you use SAXBuilder.
It uses a SAX parser to read the stream and then builds

the document according to the SAX parser callbacks. The
good part of this design is that as SAX parsers get faster,
SAXBuilder gets faster. The other main input class is
DOMBuilder. DOMBuilder builds from a DOM tree. This
class comes in handy when you have a preexisting DOM
tree and want a JDOM version instead.

There’s no limit to the potential builders. For example,
now that Xerces has the Xerces Native Interface (XNI) to
operate at a lower level than SAX, it may make sense to
write an XNIBuilder to support some parser knowledge
not exposed via SAX. One popular builder that has been
contributed to the project is the ResultSetBuilder. It
takes a JDBC result set and creates an XML document
representation of the SQL result, with various
configurations regarding what should be an element and
what should be an attribute.

The org.jdom.output package holds the classes that
output XML documents. The most important class is
XMLOutputter. It converts documents to a stream of
bytes for output to files, streams, and sockets. The
XMLOutputter has many special configuration options
supporting raw output, pretty output, or compressed
output, among others. It’s a fairly complicated class.
That’s probably why this capability still doesn’t exist
in DOM Level 2.

Other outputters include the SAXOutputter, which
generates SAX events based on the document content.
Although seemingly arcane, this class proves extremely
useful in XSLT transforms, because SAX events can be a
more efficient way than bytes to transfer document data
to an engine. There’s also a DOMOutputter, which builds a
DOM tree representation of the document. An

C

6 8 S E P T E M B E R / O C T O B E R 2 0 0 2 O T N . O R A C L E . C O M / O R A C L E M A G A Z I N E

G
E

TT
Y

O
N

E
/E

Y
E

W
IR

E

J D O M A N D X M L PA R S I N G

interesting contributed outputter is the JTreeOutputter,
which—with just a few dozen lines of code—builds a
JTree representation of the document. Combine that
with the ResultSetBuilder, and you can go from a SQL
query to a tree view of the result with just a couple of
lines of code, thanks to JDOM.

Note that, unlike in DOM, documents are not tied
to their builder. This produces an elegant model in
which you have classes to hold data, various classes to
construct data, and various other classes to consume
the data. Mix and match as desired!

The org.jdom.transform and org.jdom.xpath packages
have classes that support built-in XSLT transformations
and XPath lookups.

Finally, the org.jdom.adapters package holds classes
that assist the library in DOM interactions. Users of the

library never need to call upon the classes in this package.
They’re there because each DOM implementation has
different method names for certain bootstrapping tasks, so
the adapter classes translate standard calls into parser-
specific calls. The Java API for XML Processing (JAXP)
provides another approach to this problem and actually
reduces the need for these classes, but they’ve retained
them because not all parsers support JAXP, nor is JAXP
installed everywhere, due to license issues.

CREATING A DOCUMENT
Documents are represented by the org.jdom.Document class.
You can construct a document from scratch:

// This builds: <root/>

Document doc = new Document(new Element("root"));

Or you can builkd a document from a file, stream,
system ID, or URL:

// This builds a document of whatever's in the given resource

SAXBuilder builder = new SAXBuilder();

Document doc = builder.build(url);

Putting together a few calls makes it easy to create a
simple document in JDOM:

// This builds: <root>This is the root</root>

Document doc = new Document();

Element e = new Element("root");

e.setText("This is the root");

doc.addContent(e);

If you’re a power user, you may prefer to use “method
chaining,” in which multiple methods are called in
sequence. This works because the set methods return the
object on which they acted. Here’s how that looks:

Document doc = new Document(

new Element("root").setText("This is the root"));

For a little comparison, here’s how you’d create the
same document, using JAXP/DOM:

// JAXP/DOM

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

Document doc = builder.newDocument();

Element root = doc.createElement("root");

Text text = doc.createText("This is the root");

root.appendChild(text);

doc.appendChild(root);

BUILDING WITH SAXBUILDER
As shown earlier, SAXBuilder presents a simple mechanism
for building documents from any byte-oriented resource.
The default no-argument SAXBuilder() constructor uses
JAXP behind the scenes to select a SAX parser. If you want
to change parsers, you can set the javax.xml.parsers.SAX
ParserFactory system property to point at the SAXParser
Factory implementation provided by your parser. For the
Oracle9i Release 2 XML parser, you would do this:

java -

Djavax.xml.parsers.SAXParserFactory=oracle.xml.jaxp.JXSAXParser

Factory YourApp

For the Xerces parser, you would do this instead:

java -Djavax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.

SAXParserFactoryImpl YourApp

If JAXP isn’t installed, SAXBuilder defaults to Apache
Xerces. Once you’ve created a SAXBuilder instance, you can
set several properties on the builder, including:

setValidation(boolean validate)

This method tells the parser whether to validate against
a Document Type Definition (DTD) during the build. It’s

O
R

A
C

L
E

D
E

V
E

LO
P

E
R

BY JASON HUNTER

O R A C L E M A G A Z I N E S E P T E M B E R / O C T O B E R 2 0 0 2 6 9

false (off) by default. The DTD used is the one referenced
within the document’s DocType. It isn’t possible to validate
against any other DTD, because no parsers support that
capability yet.

setIgnoringElementContentWhitespace(boolean ignoring)

This method tells the parser whether to ignore what’s
called ignorable whitespace in element content. Per the XML
1.0 spec, whitespace in element content must be preserved by
the parser, but when validating against a DTD it’s possible for
the parser to know that certain parts of a document don’t
declare to support whitespace, so any whitespace in that area
is “ignorable.” It’s false (off) by default. It’s generally good to
turn this on for a little performance savings, unless you want
to “round trip” a document and output the same content as
was input. Note that this flag has an effect only if validation is
on, and validation causes a performance slowdown, so this
trick is useful only when validation is already in use.

setFeature(String name, String value)

This method sets a feature on the underlying SAX parser.
This is a raw pass-through call, so be very careful when using
this method, because setting the wrong feature (such as tweak-
ing namespaces) could break JDOM behavior. Furthermore,
relying on any parser-specific features could limit portability.
This call is most useful for enabling schema validation.

setProperty(String name, Object value)

This method sets a property on the underlying SAX parser.
It’s also a raw pass-through call, with the same risks and the
same usefulness to power users, especially for schema validation.

Putting together the methods, the following code uses the
JAXP-selected parser to read a local file, with validation
turned on and ignorable whitespace ignored.

SAXBuilder builder = new SAXBuilder();

builder.setValidation(true);

builder.setIgnoringElementContentWhitespace(true);

Document doc = builder.build(new File("/tmp/foo.xml"));

WRITING WITH XMLOUTPUTTER
A document can be output to many different formats, but
the most common is a stream of bytes. In JDOM, the
XMLOutputter class provides this capability. Its default
no-argument constructor attempts to faithfully output a

document exactly as
stored in memory.
The following code
produces a raw
representation of a
document to a file.

// Raw output

XMLOutputter outp = new XMLOutputter();

outp.output(doc, fileStream);

If you don’t care about whitespace, you can enable
trimming of text blocks and save a little bandwidth:

// Compressed output

outp.setTextTrim(true);

outp.output(doc, socketStream);

If you’d like the document pretty-printed for human display,
you can add some indent whitespace and turn on new lines:

outp.setTextTrim(true);

outp.setIndent(" ");

outp.setNewlines(true);

outp.output(doc, System.out);

When pretty-printing a document that already has formatting
whitespace, be sure to enable trimming. Otherwise, you’ll add
formatting on top of formatting and make something ugly.

NAVIGATING THE ELEMENT TREE
JDOM makes navigating the element tree quite easy. To get the
root element, call:

Element root = doc.getRootElement();

To get a list of all its child elements:

List allChildren = root.getChildren();

To get just the elements with a given name:

List namedChildren = root.getChildren("name");

And to get just the first element with a given name:

Element child = root.getChild("name");

The “List” returned by the getChildren() call is a
java.util.List, an implementation of the List interface all Java
programmers know. What’s interesting about the List is that
it’s live. Any changes to the list are immediately reflected in
the backing document.

// Remove the fourth child

allChildren.remove(3);

// Remove children named “jack”

allChildren.removeAll(root.getChildren("jack"));

// Add a new child, at the tail or at the head

allChildren.add(new Element("jane"));

allChildren.add(0, new Element("jill"));

7 0 S E P T E M B E R / O C T O B E R 2 0 0 2 O T N . O R A C L E . C O M / O R A C L E M A G A Z I N E

J D O M A N D X M L PA R S I N G

Open source JDOM library
www.jdom.org

Java Servlet Programming by Jason Hunter (O’Reilly
& Associates, 2001)
www.oreilly.com

WEBLOCATOR

7 2 S E P T E M B E R / O C T O B E R 2 0 0 2 O T N . O R A C L E . C O M / O R A C L E M A G A Z I N E

J D O M A N D X M L PA R S I N G

Using the List metaphor makes possible many element
manipulations without adding a plethora of methods.
For convenience, however, the common tasks of adding
elements at the end or removing named elements have
methods on Element itself and don’t require obtaining
the List first:

root.removeChildren("jill");

root.addContent(new Element("jenny"));

One nice perk with JDOM is how easy it can be to move
elements within a document or between documents. It’s the
same code in both cases:

Element movable = new Element("movable");

parent1.addContent(movable); // place

parent1.removeContent(movable); // remove

parent2.addContent(movable); // add

With DOM, moving elements is not as easy, because in DOM
elements are tied to their build tool. Thus a DOM element must
be “imported” when moving between documents.

With JDOM the only thing you need to remember is to
remove an element before adding it somewhere else, so that
you don’t create loops in the tree. There’s a detach() method
that makes the detach/add a one-liner:

parent3.addContent(movable.detach());

If you forget to detach an element before adding it to another
parent, the library will throw an exception (with a truly precise
and helpful error message). The library also checks Element
names and content to make sure they don’t include inappro-
priate characters such as spaces. It also verifies other rules, such
as having only one root element, consistent namespace
declarations, lack of forbidden character sequences in comments
and CDATA sections, and so on. This feature pushes “well-
formedness” error checking as early in the process as possible.

HANDLING ELEMENT ATTRIBUTES
Element attributes look like this:

<table width="100%" border="0"> ... </table>

With a reference to an element, you can ask the element for
any named attribute value:

String val = table.getAttributeValue("width");

You can also get the attribute as an object, for performing
special manipulations such as type conversions:

Attribute border = table.getAttribute("border");

int size = border.getIntValue();

To set or change an attribute, use setAttribute():

table.setAttribute("vspace", "0");

To remove an attribute, use removeAttribute():

table.removeAttribute("vspace");

WORKING WITH ELEMENT TEXT CONTENT
An element with text content looks like this:

<description>

A cool demo

</description>

In JDOM, the text is directly available by calling:

String desc = description.getText();

The XML Developer Kit (XDK) is a free library of XML tools
Oracle provides for developers. It includes an XML parser

and an XSLT transformation engine that can be used with
JDOM. You can find lots of information about these tools at the
Oracle XML home page, oracle.com/xml.

To download the parser, look for the XML Developer Kit with
the name “XDK for Java.” Click on “Software” in the left column
for the download links. Once you unpack the distribution, the
file xmlparserv2.jar contains the parser.

To configure JDOM and other software to use the Oracle
parser by default, you need to set the JAXP javax.xml.parsers
.SAXParserFactory system property to oracle.xml.jaxp.JXSAX
ParserFactory. This tells JAXP that you prefer the Oracle parser.
The easiest way is at the command line:

java -

Djavax.xml.parsers.SAXParserFactory=oracle.xml.jaxp.JXSA

XParserFactory

You can also set this programmatically:

System.setProperty("javax.xml.parsers.

SAXParserFactory",

"oracle.xml.jaxp.JXSAXParserFactory");

In addition to XDK, Oracle provides a native XML repository with
Oracle9i Database Release 2. Oracle9i XML Database (XDB) is a
high-performance, native XML storage and retrieval technology. It
fully absorbs the W3C XML data model into Oracle9i Database and
provides new standard access methods for navigating and query-
ing XML. With XDB, you get all the advantages of relational data-
base technology plus the advantages of XML technology.

O R A C L E X M L T O O L S

O R A C L E M A G A Z I N E S E P T E M B E R / O C T O B E R 2 0 0 2 7 3

Just remember, because the XML 1.0 specification requires
whitespace to be preserved, this returns "\n A cool demo\n".
Of course, as a practical programmer you often don’t need
want to be so literal about formatting whitespace, so there’s a
convenient method for retrieving the text while ignoring
surrounding whitespace:

String betterDesc = description.getTextTrim();

If you really want whitespace out of the picture, there’s even a
getTextNormalize() method that normalizes internal whitespace
with a single space. It’s handy for text content like this:

<description>

Sometimes you have text content with formatting

space within the string.

</description>

To change text content, there’s a setText() method:

description.setText("A new description");

Any special characters within the text will be interpreted
correctly as a character and escaped on output as needed to
maintain the appropriate semantics. Let’s say you make this call:

element.setText("<xml/> content");

The internal store will keep that literal string as characters.
There will be no implicit parsing of the content. On output,
you’ll see this:

<elt><xml/> content<elt>

This behavior preserves the semantic meaning of the
earlier setText() call. If you want XML content held within
an element, you must add the appropriate JDOM child
element objects.

Handling CDATA sections is also possible within JDOM. A
CDATA section indicates a block of text that shouldn’t be
parsed. It is essentially a “syntactic sugar” that allows the easy
inclusion of HTML or XML content without so many < and
> escapes. To build a CDATA section, just wrap the string
with a CDATA object:

element.addContent(new CDATA("<xml/> content"));

What’s terrific about JDOM is that a getText() call returns
the string of characters without bothering the caller with
whether or not it’s represented by a CDATA section.

DEALING WITH MIXED CONTENT
Some elements contain many things such as whitespace,
comments, text, child elements, and more:

<table>

<!-- Some comment -->

Some text

<tr>Some child element</tr>

</table>

When an element contains both text and child elements,
it’s said to contain “mixed content.” Handling mixed content
can be potentially difficult, but JDOM makes it easy. The
standard-use cases—retrieving text content and navigating
child elements—are kept simple:

String text = table.getTextTrim(); // "Some text"

Element tr = table.getChild("tr"); // A straight reference

For more advanced uses needing the comment, whitespace
blocks, processing instructions, and entity references, the raw
mixed content is available as a List:

List mixedCo = table.getContent();

Iterator itr = mixedCo.iterator();

while (itr.hasNext()) {

Object o = i.next();

if (o instanceof Comment) {

...

}

// Types include Comment, Element, CDATA, DocType,

// ProcessingInstruction, EntityRef, and Text

}

As with child element lists, changes to the raw content list
affect the backing document:

// Remove the Comment. It's "1" because "0" is a whitespace block.

mixedCo.remove(1);

If you have sharp eyes, you’ll notice that there’s a Text class
here. Internally, JDOM uses a Text class to store string content
in order to allow the string to have parentage and more easily
support XPath access. As a programmer, you don’t need to
worry about the class when retrieving or setting text—only
when accessing the raw content list.

For details on the DocType, ProcessingInstruction, and
EntityRef classes, see the API documentation at www.jdom.org.

COMING IN PART 2
In this article we began examining how to use JDOM in your
applications. In the next article, I examine XML Namespaces,
ResultSetBuilder, XSLT, and XPath. You can find Part 2 of this
series online now at otn.oracle.com/oraclemagazine. ■

Jason Hunter (jasonhunter@servlets.com) is a consultant, publisher of

Servlets.com, and vice president of the Apache Software Foundation. He holds a

seat on the JCP Executive Committee.

O
R

A
C

L
E

D
E

V
E

LO
P

E
R

